
Smart Contract Security Audit Report

Loopring Protocol Smart Contract version 2

Dec 15, 2018

1. Introduction

Loopring Protocol Smart Contract version 2 is a set of smart contracts in the Loopring
ecosystem that check order-rings from ring-miners, trustlessly settle and transfer tokens
on behalf of users, incentivize ring-miners and wallets with fees, and emit events.

SECBIT Labs carried out an audit for Loopring Protocol Smart Contract version 2 from Oct
15, 2018 to Dec 15, 2018.

In the rest of this report, if not explicitly specified, LPSC stands for Loopring Protocol
Smart Contract version 2, and Loopring protocol stands for Loopring protocol version 2.

1.1 Basic Information of LPSC

Project Website

https://loopring.org/
Project Whitepaper

https://github.com/Loopring/whitepaper
Audited Code

https://github.com/Loopring/protocol2/tree/audit-1012
Commit 10100aa616223439516c48f2c76ef386e8f996ff

According to the Loopring whitepaper, LPSC can be deployed on multiple types of
blockchains. This audit focuses only on the version targeted for Ethereum.

1.2 Audit Process

The audit is processed around the formal model of LPSC in following steps.

1. Define the formal model of LPSC from LPSC implementation, which is used as the
foundation of subsequent steps.

2. Manually review the consistency between the formal model and the LPSC
implementation as well as the Loopring whitepaper, in order to discover obvious
issues.

3. Attempt to formally prove some properties of LPSC upon the formal model, in order
to show that LPSC is well-behaved. The disproving of a property usually implies
bugs in the contract implementation.

https://loopring.org/
https://github.com/Loopring/whitepaper
https://github.com/Loopring/protocol2/tree/audit-1012

Type Description Severity Status Section

1 Impl Error Mismatched tokens in adjacent orders High Fixed 4.1

2 Impl Error withdraw() does not handle external call failures properly High Fixed 4.2

3 Impl Error Incomplete check for multiple all-or-none orders in multiple
rings

Medium Fixed 4.3

4 Potential
Risk

Potential GAS attack to ring-mines from order
brokers/owners

Low Impossible in
practice

4.4

5 Potential
Risk

High GAS consumption from abnormal token contracts Low Protected by relays 4.5

6 Potential
Risk

Inaccurate filled amounts caused by rounding errors Low Loss too tiny in
practice

4.6

Above formal model and property proofs are implemented in an interactive proof
assistant Coq, and can be found at

https://github.com/sec-bit/loopring-protocol2-verification

1.3 Issue List

Several issues have been discovered in the audit and are briefly listed below. They have
been fixed in the latest version of LPSC, or have been addressed out of LPSC, or only have
negligible effects in practice. Details of each issue can be found in the section marked in
the list. The explanation of severity can be found in the appendix at the end of this report.

The rest of this report is organized as below.

Section 2 analyzes LPSC along with the formal model.
Section 3 list LPSC properties checked by formal proofs.
Section 4 shows details of issues discovered in the audit.
Section 5 highlights best practices in LPSC.
Section 6 concludes the quality of LPSC.

https://github.com/sec-bit/loopring-protocol2-verification

2. Contract Analysis

2.1 LPSC Overview

Loopring orders are organized in order-rings. Every order in a ring sells tokens to its
immediate predecessor and buys tokens from its immediate successor. A ring must
contain 2 ~ 8 orders in the current implementation. Each order basically records the
following information:

who owns the selling tokens,
which token is sold and how much of it is desired,
which token is bought and how much of it is desired,
parameters to calculate fees each participation should get,
broker of the order.

Order-rings can be produced by ring-miners in the relay-mesh network to which users
submit their orders, or be produced by users who directly match their orders. The latter
orders are called P2P orders.

In order to incentivize every participation, an amount of fees may be reduced from
exchanged tokens and paid to ring-miners and wallets. According to which token the fees
are paid in, a publicly observable percentage, i.e., the burn rate, of miner fees are burned.
In addition, LPSC supports ring-miners to waive a percentage of fees for specified orders,
and even pay a percentage of fees from other orders to specified orders.

LPSC is deployed in multiple contracts (as shown in the following figure), which separate
the functionality of LPSC.

RingSubmitter accepts order-rings from users, validates rings and orders,
calculates fees and fills, and makes the final transfer of tokens and fees. The token
transfer between orders is made by calling transferFrom() of corresponding
token contracts. Fees, including burned fees, are first recorded in FeeHolder
contract of LPSC, which can be withdrawn later by fee recipients.

RingCanceller provides a set of functions to cancel orders.

TradeDelegate provides multiple functionalities:

a safe mechanism for RingSubmitter to interact with token contracts (e.g.,
call transferFrom() of ERC20 token contract),
an interface for RingCanceller to accomplish the cancellation jobs,
a function for RingSubmitter to record the filled amounts of orders,
a query function to check the filled amounts and cancellation status of orders.

FeeHolder is used by RingSubmitter to record and hold fees for each fee
recipient, and provides functions for fee recipients to actually get the fee tokens in
the corresponding token contracts.

BurnManager provides a public function for everyone to actually burn the burned
fees held by FeeHolder.

BurnRateTable manages the burn rates of each token. A burn rate query function
is provided for RingSubmitter and others to get the current burn rates of
specified tokens. It also implements a mechanism to adjust the burn rates of each
token.

BrokerRegistry provides functions to query/register/unregister order brokers.
The query interface is used by RingSubmitter in the order validation.

OrderBook provides a public order book where order owners and brokers can save
their orders on chain. Everyone can look for the order details in the order book by
the order hash.

OrderRegistry allows users to directly register their orders in LPSC. The further
order signature verification in RingSubmitter is not required for those registered
orders.

2.2 Formal Model

The audit is primarily carried out around a formal model of LPSC. The formal model,
built from the LPSC implementation, abstracts and expresses behaviors of the LPSC
implementation in a formal language, which is then used for the manual review and the
formal proofs of properties of LPSC.

Both the formal model and the formal proofs are implemented in an interactive proof
assistant Coq. Coq has been widely used in both academical an industrial projects for
security guarantee and enhancement, such as operating systems, compilers and
cryptography libraries. The underlying type and logic system in Coq can guarantee the
correctness of proofs.

The Coq code of formal model and proofs of LPSC can be found at https://github.com/sec-
bit/loopring-protocol2-verification. This report only explains the overall framework and
some special parts of the formal model and proofs, rather than goes deep into every
detail.

The formal model defines an abstract state machine for LPSC.

The machine state, or world state, abstracts storage variables of LPSC and token
contracts. A world state can be thought as a tuple, of which each element represents
the semantics of one or multiple storage variables of the contract. For example, a
storage variable of type mapping(address => bool) can be represented by a
total map whose domain is the set of natural numbers and range is a set of boolean
values.
The state transition describes how the world state is changed, which events are
emitted, and what value is returned on a successful message call to LPSC or token

https://github.com/sec-bit/loopring-protocol2-verification

contracts. State transitions only include the execution of message calls without
revert. The revert of a message call in certain conditions (e.g., a specific
combination of argument values and storage variable values) is represented as the
non-existence of state transition in such conditions.

At the top level of the state machine definition:

The world state is defined by WorldState (in Coq file Models/States.v) as the
aggregation of sub-states of LPSC contracts, token contracts and the blockchain
(fields wst_* in WorldState).

All possible message calls are defined by an inductive type Message (in Coq file
Models/Messages.v), which aggregates all public/external functions of LPSC and
token contracts.

All events are defined by an inductive type Event (in Coq file Models/Events.v),
which aggregates all possible events from LPSC and some pseudo events that aid the
modeling and proving.

The state transition is defined inductively by lr_steps (in Coq file
Models/TopModel.v).

The base case lr_steps_nil of lr_steps says nothing changes if no
message is called.
The induction case lr_steps_cons of lr_steps says the effects of the
successful execution of one or multiple message calls are the concatenation
of the sequential executions of them from the beginning to the end.

For example,

means the successful execution of a sequence of message calls to msg0 and msg1
will change the beginning world state wst to wst', return some value v, and
generate a sequence of events evt0, evt1 and evt2.

At the lower level, the state transition of the entire world state is divided into multiple
contract-specific transitions. The contract-specific transition for a contract is composed of
a set of specifications of public/external functions of that contract. A function specification
models following three aspects of the function (as defined by FSpec in Coq file
Libs/LibModel.v):

fspec_require describes the requirements that must be satisfied in order to
execute the function successfully without revert;
fspec_trans describes how the successful execution of the function changes the

lr_steps wst (msg0::msg1::nil) wst' v (evt0::evt1::evt2::nil)

world state and what value is returned;
fspec_events describes the events emitted from the successful execution of the
function.

The rest of this section analyzes each LPSC contract along with its sub-state and function
specifications.

2.3 RingSubmitter

RingSubmitter is the primary contract of LPSC. Its single public function
submitRings(bytes data) is called by ring-miners and users to submit order-rings.
submitRings() then calculates fills and fees for each order, and transfers tokens and
fees at the end.

Modeled contract files

contracts/impl/RingSubmitter.sol
contracts/impl/Data.sol
contracts/helper/{Mining, Order, Participation,
Ring}Helper.sol

Coq files

Models/{RingSubmitter, States, Events, Messages}.v

2.3.1 Sub-state

The sub-state of RingSubmitter is represented by wst_ring_submitter_state in
WorldState and defined by RingSubmitterState in Coq file States.v. Each field of
the sub-state represents a storage variable of RingSubmitter of the similar name (e.g.,
submitter_lrcTokenAddress for storage variable lrcTokenAddress).

Because the primary portion of submitRings() operates memory variables rather than
storage variables, the formal model of RingSubmitter in addition models them by an
internal state RingSubmitterRuntimeState (in Coq file RingSubmitter.v) with
following fields:

submitter_rt_mining, defined by MiningRuntimeState, models the mining
portion deserialized from submitRings() argument and its subsequent changes
in memory;
submitter_rt_orders, defined as a list of OrderRuntimeState, models the
Order array deserialized from submitRings() argument and its subsequent
changes in memory;
submitter_rt_rings, defined as a list of RingRuntimeState, models the Ring

array deserialized from submitRings() argument and its subsequent changes in
memory;
submitter_rt_token_spendables is defined as a total map in Coq from the
token owner and the token address to the corresponding spendable amount of
TradeDelegate;
submitter_rt_broker_spendables is defined as a total map in Coq from the
token broker, the token owner and the token address to the corresponding
spendable amount of the broker, which and the above
submitter_rt_token_spendables are used to model various spendable
amount calculations in submitRings() and its sub-calls.

2.3.2 Specifications

The specification of submitRings() is defined by submitRings_spec in Coq file
RingSubmitter.v.

The byte array argument of submitRings is modeled by its semantics a^er
deserialization, i.e., a list of orders, a list of rings, and the mining parameters.

submitRings along with its sub-calls is large and complicated, so submitRings_spec
models it by a sequence of sub-specifications, each of which models a small portion of
submitRings.

update_orders_hashes_subspec,
update_orders_brokers_and_interceptors_subspec,
get_filled_and_check_canceled_subspec and check_orders_subspec
respectively model the update and check of various parameters of orders, including
order hash, broker interceptors, filling/cancellation status, remaining spendable
tokens/fees;
update_rings_hash_subspec models the update of hashes of rings;
update_mining_hash_subspec and update_miner_interceptor_subspec
respectively model the update and check of various parameters about ring-miner;
check_miner_signature_subspec and check_orders_dual_sig_subspec
respectively model the check of order/ring/miner hashes and signatures;
calc_fills_and_fees_subspec models the calculation of various fill amounts
and fees;
validate_AllOrNone_subspec models the validation of all or none status;
calc_and_make_payments_subspec models the make of final payments of
tokens and fees.

For such a complicated implementation, it specification and sub-specifications are mostly
defined by following the Solidity code in Coq. For example,
RingHelper::checkOrdersValid() called by submitRings() is modeled in Coq as
below. Check comments in (* *) for the explanation.

(Note: There was a bug in checkOrdersValid() as mentioned in Section 4.1. Here we
refer to the fixed version.)

 (* Model the loop in checkOrdersValid() inductively.

 '_ring_orders_valid orders pps ps' means orders referred by
 participations 'ps' are valid.

 * 'pps' represents participations that have been iterated,
 * 'ps' represents the rest participations in the ring,
 * 'orders' represents all orders submitted to 'submitRings()'.

 If 'ps' represents all participations in a ring, then
 '_rings_orders_valid orders nil ps' represents the ring is valid.
 *)
 Inductive _ring_orders_valid
 (orders: list OrderRuntimeState)
 (pps: list Participation)
 : list Participation -> Prop :=
 | RingOrdersValid_nil:
 (* Base case: an empty ring (nil) is always valid *)
 _ring_orders_valid orders pps nil

 | RingOrdersValid_cons:
 (* Inductive case:

 Suppose,
 * 'p' is the current participation being checked
 * 'p_ord' is the order referred by 'p'
 * 'pp' is the previous participation of 'p'
 * 'pp_ord' is the order referred by 'pp'
 * 'pps' are all checked participations
 * 'ps' are remaining participations (may be nil) except 'p'

 If
 * the valid field of the current participation 'p' is true,
 * the selling token of the current order 'p_ord' and the
 buying token of the previous order 'pp_ord' match, and
 * orders referred by remaining participations 'ps' are valid,
 then it can conclude orders referred by participations 'p::ps'

2.4 RingCanceller

RingCanceller provides a set of public functions for brokers to make their orders to
become canceled at the specified time. Each function provides a different way to specify
orders, such as by the order hash, the order owner, the trading tokens of that order, and
the certain combinations of them. If an order-ring contains orders that have been
canceled before a message call to submitRings(), the entire order-ring will not be filled
by submitRings().

Modeled contract files

contract/impl/RingCanceller.sol
Coq files

Models/{RingCanceller, States, Events, Messages}.v

2.4.1 Sub-state

 are valid.
 *)
 forall p ps pp p_ord pp_ord,
 get_pp pps ps = Some pp ->
 nth_error orders (part_order_idx p) = Some p_ord ->
 nth_error orders (part_order_idx pp) = Some pp_ord ->
 (* the valid field of the current participation is true *)
 ord_rt_valid p_ord = true ->
 (* tokens match *)
 order_tokenS (ord_rt_order p_ord) =
 order_tokenB (ord_rt_order pp_ord) ->
 (* orders in the rest of participations are valid *)
 _ring_orders_valid orders (pps ++ p :: nil) ps ->
 _ring_orders_valid orders pps (p :: ps)
 .

 (* Orders in ring 'r' are valid. *)
 Definition ring_orders_valid
 (r: RingRuntimeState)
 (orders: list OrderRuntimeState) : Prop :=
 (* r.valid == true *)
 ring_rt_valid r = true /\
 let ps := ring_rt_participations r in
 (* ... and r has at least 2 and at most 8 participations (ps) *)
 1 < length ps <= 8 /\
 (* ... and all orders referred by participations are valid *)
 _ring_orders_valid orders nil ps.

The sub-state of RingCanceller is represented by wst_ring_canceller_state in
WorldState and defined by RingCancellerState in Coq file States.v. Each field of
the sub-state represents a storage variable of RingCanceller.

2.4.2 Specifications

Each public cancellation function in RingCanceller is modeled by a specification in
Coq file RingCanceller.v with a similar name, e.g., cancelOrders() by
cancelOrders_spec.

RingCanceller primarily calls TradeDelegate to accomplish various cancellation
operations, so the specification of each cancellation functions is primarily defined by the
model of TradeDelegate.

Take the contract function cancelAllOrdersForTradingPair() as an example.
cancelAllOrdersForTradingPair() calls setTradingPairCutoffs() in
TradeDelegate. Its specification cancelAllOrdersForTradingPair_spec refers to
the model of TradeDelegate (defined in Section 2.5) for the requirements, state
changes and generated events of the message call to setTradingPairCutoffs(), and
use them to describe the behavior of cancelAllOrdersForTradingPair.

2.5 TradeDelegate

Both RingSubmitter and RingCanceller call TradeDelegate to accomplish their
jobs, including

transferring ERC20 tokens,
canceling orders,
recording filled amounts of orders, and
querying filled amounts and cancellation status of orders.

Besides the query function, all other functions above are restricted to be called only by
authorized users and when TradeDelegate is not suspended or killed. Therefore,
TradeDelegate also provides public interface to

authorize/deauthorize users
suspend/resume/kill itself.

The suspend/kill of TradeDelegate actually pauses/stops LPSC from trading and
canceling any orders.

Modeled contract files

contract/impl/TradeDelegate.sol

Coq files

Models/{TradeDelegate, States, Events, Messages}.v

2.5.1 Sub-state

The sub-state of TradeDelegate is represented by wst_trade_delegate_state in
WorldState and defined by TradeDelegateState in Coq file States.v. Each field of
the sub-state represents a storage variable of TradeDelegate with the similar name. For
example,

delegate_owner models the storage variable owner that specifies the contract
owner of TradeDelegate;
delegate_suspended models the storage variable suspended that specifies if
the contract is suspended;
delegate_authorizedAddresses, which maps addresses to boolean values,
specifies whether an address is authorized and models the semantics of the storage
variable authorizedAddresses.

2.5.2 Specifications

Each public/external function in RingCanceller is modeled by a specification in Coq
file TradeDelegate.v with a similar name, e.g., batchTransfer() by
batchTransfer_spec.

Specially, restrictions on callers are modeled in fspec_require of specifications, which
must be satisfied in order to execute the function without revert.

For functions requiring authorized callers, fspec_require in their specifications
include a proposition that states sender (representing msg.sender) must be
mapped by delegate_authorizedAddresses in the pre-state to true;
For functions limiting callers to the contract owner, fspec_require in their
specifications include a proposition that states sender (representing msg.sender)
must be the same as delegate_owner in the pre-state.

Restrictions on the suspended status are also modeled in fspec_require.

For functions only working in the non-suspended status, fspec_require in their
specifications include a proposition that states delegate_suspended in the pre-
state must be false;
For functions only working in the suspended status, the opposite proposition is
included in fspec_require.

2.6 FeeHolder

In LPSC, all fees, including the wallet fee, the miner fee, the burned fee and fees shared to
orders, are first transferred to FeeHolder which also records who has how much fee in
which token. Every fee recipient can later call FeeHolder to withdraw its fees, i.e.,
transferring fees in token contracts.

Modeled contract files

contracts/impl/FeeHolder.sol
Coq files

Models/{FeeHolder, States, Events, Messages}.v

2.6.1 Sub-state

The sub-state of FeeHolder is represented by wst_feeholder_state in WorldState
and defined by FeeHolderState in Coq file States.v. Each field of the sub-state
represents a storage variable of FeeHolder with the similar name. For example,

feeholder_feeBalances is defined by a total map in Coq from the token address
and the fee recipient address to the amount of remaining fees, which models the
storage variable feeBalances.

2.6.2 Specifications

Each public/external function in FeeHolder is modeled by a specification in Coq file
FeeHolder.v with the similar name, e.g., withdrawBurned() by
withdrawBurned_spec.

In the specification batchAddFeeBalances_spec of
batchAddFeeBalances(byte32[] batch), which is called by RingSubmitter to
record the fee balances:

The byte array parameter is modeled by its semantics a^er deserialization, i.e., a
list of tuples (token, recipient, amount) (FeeBalanceParam in Coq file
Messages.v). Each tuple means the recipient has an additional amount of fee
in token.
fspec_trans specifies that, for each tuple (token, recipient, amount) in the
argument, the fee amount amount is added to the existing fee amount recorded in
feeholder_feeBalances for token token and recipient recipient.
fspec_require includes a proposition is_authorized wst sender which
states bachAddFeeBalances() can be called only by authorized users.

In the specification withdrawBurned_spec of withdrawBurned(address token,
uint value), which is called by BurnManager to transfer an amount value of fee
tokens from FeeHolder to BurnManager in the token contract of token:

fspec_require specifies the requirement for the authorized caller in the same
way as batchAddFeeBalances_spec.

fspec_require also includes a proposition to state the remaining fee balance of
the caller in token in the pre-state must be not less than the amount value.

fpsec_trans specifies a successful execution of this function must present both

a true return value, and
a successful execution of the transfer() function of the fee token contract
that transfers the specified amount of tokens from FeeHolder to the caller.

fspec_events specifies the successful execution of this function must emit an
event TokenWithdrawn that specifies an amount value of token is withdrawn
from the fee balance of FeeHolder.

In the specification withdrawToken_spec of withdrawToken(address token,
uint value), which can be called by anyone to transfer an mount value of fee tokens
from FeeHolder to the caller in the token contract of token:

fspec_require does not include any restriction on the caller.
fspec_require specifies the same requirement for sufficient remaining fee
balance as withdrawBurned_spec.
fspec_trans specifies the state changes and return value of a successful
execution in the same way as withdrawBurned_spec.
fspec_events specifies the successful execution of this function must emit an
event TokenWithdrawn that specifies an amount value of token is withdrawn
from the fee balance of the caller.

2.7 BurnManager

BurnManager provides a public interface which can be used by anyone to actually burn
the burned fees which were held by FeeHolder.

Note: In the audited version, only fees in LRC token can be burned. The burn operation is
accomplished by burn() in LRC token contract.

Modeled contract files

contracts/impl/BurnManager.sol
Coq files

Models/BurnManager, States, Events, Messages}.v

2.7.1 Sub-state

The sub-state of BurnManager is represented by wst_burn_manager_state in
WorldState and defined by BurnManagerState in Coq file States.v. Each field of
the sub-state represents a storage variable of BurnManager with the similar name.

2.7.2 Specifications

The only public function burn(address token) transfers burned fees from
FeeHolder and burns them by burn() of LRC token contract.

In its specification burn_spec:

spec_require does not include any restriction on the caller, i.e., this function can
be called by anyone.

spec_require includes a proposition that requires the argument token must be
the LRC token.

spec_trans states a successful execution of this function must present

a true return value,
a successful execution of FeeHolder::withdrawBurned() that transfers
all burned fee tokens in LRC from FeeHolder to BurnManager,
a successful execution of burn() of the LRC token contract that burns all
transferred burned fee tokens from BurnManager.

2.8 BurnRateTable

BurnRateTable manages the burn rates of tokens.

Modeled contract files

contracts/impl/BurnRateTable.sol
Coq files

Models/{BurnRateTable, States, Events, Messages}.v

In Loopring protocol v2, a certain percentage, i.e., the burn rate, must be reduced from
the ring-miner fees. The reduced fees, i.e., the burned fees, are burned finally and not
paid to ring-miners.

All tokens are divided into four tiers, while each tier has a different burn rate from others
as shown below.

Tier Burn Rate for P2P Order Burn Rate for Non-P2P Order

1 0.5% 5.0%

2 2.0% 20.0%

3 3.0% 40.0%

4 6.0% 60.0%

LRC is fixed at tier 1.
WETH is fixed at tier 3.
Other tokens stay at tier 4, unless they are upgraded via upgradeTokenTier().
Besides LRC, WETH and tokens at tier 1, users can call upgradeTokenTier() to
upgrade a token by one tier. The caller must pay 0.5% of the total LRC supply for
each upgrade. The paid LRC tokens are burned.
Besides LRC and WETH, if a token is not at tier 4, it can stay at its current tier for
63,113,904 seconds (730 days, or 2 years). If no further upgrade is performed for that
token before the expiry, the token will be downgraded to tier 4 a^er the expiry.

2.8.1 Sub-state

The sub-state of BurnRateTable is represented by wst_burn_rate_table_state in
WorldState and defined by BurnRateTableState in Coq file States.v.

burnratetable_tokens, defined as a total map in Coq from token address to its
tier and validation information, models the storage variable tokens.

2.8.2 Specifications

Each public/external function in BurnRateTable is modeled by a specification in Coq
file BurnRateTable.v with a similar name.

In the specification getBurnRate_spec of getBurnRate(address token), which
can be called by anyone to get token's P2P and non-P2P burn rates in one uint32 value:

spec_trans specifies tokens's P2P and non-P2P burn rates, which are calculated
from the tier information recorded in burnratetable_tokens (i.e., tokens in
BurnRateTable), are returned in the highest 16-bit and the lowest 16-bit of one 32-
bit integer.

In the specification getTokenTier_spec of getTokenTier(address token), which
can be called by anyone to get token's tier:

spec_trans specifies token's tier recorded in burnratetable_tokens (i.e.,

tokens in BurnRateTable) is returned.

In the specification upgradeTokenTier_spec of upgradeTokenTier(address
token), which can be called by anyone who has sufficient LRC tokens to upgrade non-
LRC and non-WETH token by one tier:

spec_require states

the argument token must not be the same as any of 0, the LRC token address
and the WETH token address,
the current tier of token must not be 1,
the caller has enough LRC tokens (0.5% of the current total amount of LRC
tokens) to burn.

spec_trans specifies a successful execution must preset

a successful message call to totalSupply() of the LRC token contract,
which gets the current total supply of LRC tokens,
a successful message call to burnFrom() of the LRC token contract, which
burns 0.5% of the total supply of LRC tokens from the caller,
a return value true.

spec_events specifies the events generated from a successful execution must
contain an event TokenTierUpgraded that specifies the upgrade token is token
and the post-upgrade tier of token is just one tier higher than before.

2.9 BrokerRegistry

BrokerRegistry provides a public interface for order owners to register the
information of their brokers to LPSC. RingSubmitter also queries BrokerRegistry
for those information when validating submitted orders.

Modeled contract files

contracts/impl/BrokerRegistry.sol
Coq files

Models/{BrokerRegistry, States, Events, Messages}.v

2.9.1 Sub-state

The sub-state of BrokerRegistry is represented by wst_broker_registry_state in
WorldState and defined by BrokerRegistryState in Coq file States.v.

broker_registry_brokersMap, defined as a map from the order owner address
to a map from the broker address to the broker information Broker, approximately
models the storage variables brokersMap and positionMap together.

2.9.2 Specifications

In the specification registerBroker_spec of registerBroker(address broker,
address interceptor), which is called by the order owner to register its broker and
an optional interceptor (if not 0) for that broker to LPSC:

fspec_require states

the argument broker must be non-zero,
broker must have not been mapped in broker_registry_brokersMap,
i.e., it must have not been registered.

fspec_trans specifies broker_registry_brokersMap in the post-state of a
successful execution of this function must map the caller and the specified broker
to a Broker that contains the order owner address, the broker address and the
interceptor address.

fspec_events specifies a successful execution of this function must emit an event
BrokerRegistered that specifies the caller registers a broker whose interceptor,
if not zero, is interceptor.

In the specification unregisterBroker_spec of unregisterBroker(address
addr), which is called by the order owner to unregister its broker addr from LPSC:

fspec_require states

the argument addr must be non-zero,
broker_registry_brokersMap in the pre-state must have mapped the
caller and the specified broker addr, i.e., the broker addr must have been
registered.

fpsec_trans specifies broker_registry_brokersMap in the post-state of a
successful execution of this function must not map the caller and the broker addr,
i.e., the broker is indeed unregistered.

fspec_events specifies a successful execution of this function must emit an event
BrokerUnregistered that specifies the caller unregisters its broker addr.

In the specification of unregisterAllBrokers_spec of unregisterAllBrokers(),
which is called by the order owner to unregister all its registered brokers from LPSC:

fspec_trans states broker_registry_brokersMap in the post-state does not
map any broker for the caller.
fspec_events specifies the successful execution must emit and event
AllBrokersUnregistered that specifies all brokers of the caller have been
unregistered.

In the specification getBroker_spec of getBroker(address owner, address
addr), which checks whether the order owner's broker addr has been registered and, if
registered, get its interceptor:

fspec_trans simply looks up broker_registry_brokersMap to get the
information of the specified broker.

If the broker is not registered, RetBrokerInterceptor None must be
returned which represent the return of (false, 0) in the contract.
If the broker is registered, RetBrokerInterceptor
(broker_interceptor broker_info) must be returned which
represents the return of (true, interceptor) in the contract.

getAllBrokers(address owner, uint start, uint count), which can get
addresses and interceptors of multiple brokers of the caller, is not modeled and manually
inspected.

2.10 OrderBook

OrderBook provides a public order book, where order owners and brokers can submit
their orders on chain, and others can query for order details by order hashes.

Modeled contract files

contracts/impl/OrderBook.sol
Coq files

Models/{OrderBook, States, Events, Messages}.v

2.10.1 Sub-state

The sub-state of OrderBook is represented by wst_order_book_state in
WorldState and defined by OrderBookState in Coq file States.v.

ob_orders, defined as a total map from the order hash to OrderElem (defined in
Coq file States.v) which contains all booked information, models the storage
variable orders.

2.10.2 Specifications

In the specification submitOrder_spec of submitOrder(bytes32[] dataArray),
which is called by order owners and brokers to submit orders to the order book:

The byte array argument is modeled by its semantics a^er deserialization.

fspec_require specifies that

the caller must be the same as either the order owner or broker,
ob_orders in the pre-state must have not been mapped by ob_orders in
the pre-state, i.e., the order has not been submitted to the order book.

fspec_trans specifies a successful execution of this function must present

ob_orders in the post-state is updated from that in the pre-state by mapping
the submitter order by its hash, i.e., the submitted order is indeed recorded in
the order book;
the hash of the submitted order is returned.

fspec_events specifies a successful execution of this function must emit an event
OrderSubmitted that specifies the hash of the submitted order.

In the specification getOrderData_spec of getOrderData(address hash), which
can be called by anyone to query for the order information by the order hash,

fspec_trans looks up ob_orders for the queried hash.

If it is mapped, the detailed order information ord in the map must be
returned in the form RetOrder (Some ord), which represents the case a
non-empty byte array containing the order information is returned in the
contract.
If it is not mapped, RetOrder None is returned, which represents the case
an empty byte array is returned in the contract.

2.11 OrderRegistry

OrderRegistry allows order brokers to register hashes of their orders to LPSC. If the
hash of an order has been registered by its broker, RingSubmitter will not need to
verify the signature of the order submitted by the ring-miner.

Modeled contract files

contract/impl/OrderRegistry.sol
Coq files

Models/{OrderRegistry, States, Events, Messages}.v

2.11.1 Sub-state

The sub-state of OrderRegistry is represented by wst_order_registry_state in
WorldState and defined by OrderRegistryState in Coq file States.v.

order_registry_hashMap, defined as a total map from the broker address and
the order hash to a boolean value that indicates whether the order is registered,
models the storage variable hashMap.

2.11.2 Specifications

In the specification isOrderHashRegistered_spec of
isOrderHashRegistered(address owner, bytes32 hash), which checks
whether the order hash of broker owner has been registered:

fspec_trans specifies the return value must be what
order_registry_hashMap (i.e., hashMap in the contract) maps for the broker
owner and the order hash.

In the specification registerOrderHash_spec of registerOrderHash(bytes32
orderHash), which is called by order brokers to register hashes of their orders:

fspec_trans specifies order_registry_hashMap in the post-state is updated
from that in the pre-state by mapping the caller (i.e., the order broker) and the
specified order hash to true.
fspec_events specifies the successful execution of this function must emit an
event OrderRegistered that specifies the order broker and the registered order
hash.

3. Properties

One way to check whether the contract implementation does guarantee certain good
behaviors is to prove its formal model can satisfy corresponding properties. The failure to
prove a property usually implies bugs in the implementation, as long as the formal model
is consistent with the implementation.

Properties proved during the audit are explained in the rest of this section.

3.1 Properties about Suspend and Kill

TradeDelegate provides suspend() and kill() to suspend and stop LPSC from
filling and canceling orders. Following theorems proved in Coq file
Props/ControlProps.v show the suspend and kill functions indeed work as expected.

Theorem no_further_LPSC_transaction_once_suspended

A^er TradeDelegate::suspend() is successfully called, if there is no further
successful call to TradeDelegate::resume(), all further message calls to

RingSubmitter::submitRings()
all cancel*() functions in RingCanceller
TradeDelegate::batchTransfer()
TradeDelegate::batchUpdateFilled()
TradeDelegate::setCancelled() and all set*Cutoffs*() functions
in TradeDelegate

will always fail (revert), i.e., no order can be filled or canceled.

Theorem no_further_LPSC_transaction_once_killed

A^er TradeDelegate::kill() is successfully called, regardless of whether
TradeDelegate::resume() is called a^erwards, all further message calls to

RingSubmitter::submitRings()
all cancel*() functions in RingCanceller
TradeDelegate::batchTransfer()
TradeDelegate::batchUpdateFilled()
TradeDelegate::setCancelled() and all set*Cutoffs*() functions
in TradeDelegate

will always fail (revert), i.e., no order can be filled or canceled.

Theorem LPSC_cannot_be_resumed_once_killed

A^er TradeDelegate::kill() is successfully called, all further calls to
TradeDelegate::resume() will fail, i.e., a killed TradeDelegate cannot be
resumed any more.

3.2 Properties about Privileged Users

Some critical operations in LPSC must be operated by the contract owner or authorized
users. Following theorems proved in Coq file Props/ControlProps.v show LPSC does
guarantee them.

Theorem only_owner_is_able_to_control_LPSC

Only the contract owner who deploys TradeDelegate can suspend, resume and
kill TradeDelegate. Combined with theorems in Section 3.1, we can conclude
that only the contract owner can suspend, resume and stop LPSC from filling and
canceling orders.

Theorem
only_authorized_contracts_are_able_to_fill_or_cancel_orders

Functions in TradeDelegate that transfer tokens and cancels orders can only be
called by authorized users.

3.3 Properties about Valid Order-rings

LPSC puts several restrictions on submitted order-rings that can be successfully filled.
Following theorems proved in Coq files Props/{RingSubmitter,
FilledRing}Props.v show LPSC does guarantee them.

Theorem no_sub_rings

If an order-ring, submitted via RingSubmitter::submitRings(), contains sub-
rings, i.e., a token is sold in more than one orders in that ring, it will not be filled by
submitRings().

Theorem no_cancelled_orders

If an order-ring, submitted via RingSubmitter::submitRings(), contains
canceled orders, it will not be filled by submitRings().

Theorem no_token_mismatch_orders

If an order-ring, submitted via RingSubmitter::submitRings(), contains
adjacent orders of which the buying token of the first one is not the selling token of
the second one, it will not be filled by submitRings().

Theorems soundness and completeness in Props/FilledRingProps.v

These two theorems prove that, in a simplified scenario where no fee and rounding
error are considered, only the order-ring, of which the product of token exchange
rates of all orders is not less than 1, can be finally filled by
RingSubmitter::submitRings() and the filled token exchange rate of each
order is not worse than the original one.

3.4 Properties about Order Cancellation

RingCanceller provides a set of functions for order brokers to cancel orders. Following
theorems proved in Coq file Props/RingCancellerProps.v show all those functions
cannot undo the cancellation of any canceled order.

Theorem cancelOrders_no_side_effect

Every order ever canceled by cancelOrders() remains canceled, and is not
affected by subsequent calls to cancelOrders().

Theorem cancelAllOrdersForTradingPair_no_side_effect

Every order ever canceled by cancelAllOrdersForTradingPair() remains
canceled, and is not affected by subsequent calls to
cancelAllOrdersForTradingPair().

Theorem cancelAllOrders_no_side_effect

Every order ever canceled by cancelAllOrders() remains canceled, and is not
affected by subsequent calls to cancelAllOrders().

Theorem cancelAllOrdersOfOwner_no_side_effect

Every order ever canceled by cancelAllOrdersOfOwner() remains canceled,
and is not affected by subsequent calls to cancelAllOrdersOfOwner().

Theorem cancelAllOrdersForTradingPairOfOwner_no_side_effect

Every order ever canceled by cancelAllOrdersForTradingPairOfOwner()
remains canceled, and is not affected by subsequent calls to
cancelAllOrdersForTradingPairOfOwner().

3.5 Properties about Fee Withdraw

FeeHolder provides withdrawBurned() and withdrawToken() to withdraw burned
fees and fees. Following theorems proved in Coq file Props/FeeHolderProps.v show
some of their properties.

Theorem withdrawBurned_noauth

If the caller is not authorized, its call to withdrawBurned() can never succeed.
That is, non-authorized users cannot directly withdraw burned fees from
FeeHolder.

Note: It does not mean non-authorized users cannot burn the burned fees. They can
still call burn() of BurnManager to burn the burned fees in LRC. BurnManager is
authorized.

Theorem withdrawBurned_auth

If the caller is authorized and its call to withdrawBurned(token, amount)
succeeds, then the following three effects must all present:

the reduction of the specified amount of token from the corresponding
burned fee balance of FeeHolder,
a return value true, and
an event TokenWithdrawn that specifies an amount of token is withdrawn
from the fee balance of FeeHolder.

Theorem withdrawToken_noauth

A successful call to withdrawnToken(token, amount) must present all
following three effects:

the reduction of the specified amount of token from the corresponding fee
balance of the caller,
a return value true, and
an event TokenWithdrawn that specifies the caller, the fee token, and the
withdrawn amount.

3.6 Properties about Fee Burning

BurnManager provides a public function burn(), which can be called by anyone to burn
LRC fees from FeeHolder.

Theorem BurnManager_decrease_balance_of_fee_holder

This theorem in Coq file Props/BurnManagerProps.v proves that burn() only
decreases the ERC20 balance of FeeHolder. ERC20 balances and allowances of
other users are not affected.

4. Issues

Following issues have been found in the audit. All of them have been fixed in the latest
version of LPSC, or have been addressed out of LPSC, or have negligible effects in
practice.

4.1 Issue #1 Mismatched tokens in adjacent orders

Description: Each order specifies which token it wants to sell (denoted as tokenS),
and which token it wants to buy (denoted as tokenB). Those two tokens are not
necessarily the same. When submitRings() transfers the tokenS of the current
order to the previous order, it must ensure tokenB of the previous order and
tokenS of the current order are the same one. Otherwise, the wrong token may be
transferred. However, such check is missed in the audited code.
Possible Solution: Add the missed check in RingSubmitter::submitRings()
Status: Fixed
Severity: High
Misc: This issue was found in the review of the specification of submitRings() (in
Section 2.3) with the whitepaper. All sub-specifications abstract from
submitRings(), especially those including the ring/order validation checks, do
not put any restriction on the types of tokenS/tokenB in adjacent orders in the same
ring, which is not consistent with examples in the whitepaper.

4.2 Issue #2 withdraw() does not handle external call failures properly

Description FeeHolder::withdraw() is an internal function used to implement
the public fee withdraw interface withdrawBurned() and withdrawToken() of
FeeHolder. In the audited code, withdraw() works as below:

1. It first reduces the withdrawn amount from the fee balances of FeeHolder.
2. It then calls the external token contract to make the actual fee token transfer.
3. If the external call succeeds, it will return true. Otherwise, false is

returned.

In step 3, when the external call fails, withdraw() forgets to undo the state
changes ever made to the fee balances in step 1 before return. As a result, the caller
of withdrawBurned() or withdrawToken() in such cases does not get that
amount of fees and will never get, because FeeHolder thinks that amount of fees
have been withdrawn according to its stale fee balances.

Possible Solution: Revert on external call failures in withdraw()

Status: Fixed

Severity: High

Misc: This issue was found when we attempted to prove theorem
withdrawToken_noauth (in Section 3.5). For withdrawToken() in the audited
code, its formal specification (specially the fspec_trans part) states a successful
execution of withdrawToken may present the false return value with a
FeeHolderState corresponding to the state a^er above step 1.

However, the original version of theorem withdrawToken_noauth includes a
conclusion that states a false return value must always come with a
FeeHolderState which is same as the one before calling withdrawToken().
The proving based on the above specification got stuck quickly, because the above
specification apparently could not offer what the conclusion expected.

4.3 Issue #3 Incomplete check for multiple all-or-none orders in multiple rings

Description: If an all-or-none order cannot be fully filled, then LPSC should skip it.
In the audited code, a^er calculating filled amounts and fees of all orders,
RingSubmitter::submitRings() does iterate all submitted orders and checks
whether every all-or-none order is fully filled. If an all-or-none order fails the
check, the order and rings containing it will be skipped.

However, such check misses the following case

One all-or-none order Order0 is first checked, and can be fully filled by
multiple order-rings.
Another order-ring containing Order0 contains another all-or-none order
Order1.
Order1 is checked later and cannot be fully filled.

Because the second order-ring will be skipped, Order0 is actually not fully filled.
The above check, which does not consider order-rings at all, is not able to capture
such cross-ring influences. As a result, submitRings() will partially fill the all-or-
none Order0 at the end.

Possible Solution: When checking all orders, if a non-fully filled all-or-none order is
found, revert all filled amounts of orders in the same rings and redo the check for
all orders.

Status: Fixed

Severity: Medium

Misc: This issue was found when reviewing a simplified algorithm of
submitRings() in which no fee was considered.

4.4 Issue #4 Potential GAS attack to ring-mines from order brokers/owners

Description: Though ring-miners may check order owners' token balances to ensure
produced order-rings can be filled, a malicious order owner/broker is still able to
decrease its token balance before the ring-miner submits order-rings that contains
its orders. At the end, those rings and possibly other rings as well will not be able to
be filled, and the GAS paid by the ring-miner to call submitRings() are wasted.
Status: Loopring developing team replied that the ring-miner in practice submits
rings very soon a^er checking token balances, so the attack window is very short.
Therefore, such GAS attack is rarely impossible in practice. SECBIT team thinks the
explanation is reasonable.
Severity: Low

4.5 Issue #5 High GAS consumption from abnormal token contracts

Description: LPSC calls some external token contract functions (such as
transfer(), transferFrom(), allowance() and balanceOf() of ERC20
token contracts) without setting GAS limitation. A malicious or hacked token
contract may include high GAS operations. If such token is included in any
submitted order, callers to some LPSC functions, such as ring-miners to
submitRings(), BurnManager to withdrawBurned(), and brokers to
withdrawToken(), may have to pay a large amount of GAS.
Status: Loopring developing team replied the abnormal tokens are detected and
filtered by relays.
Severity: Low

4.6 Issue #6 Inaccurate filled amounts caused by rounding errors

Description: Integer divisions in Solidity have round errors, which may return
smaller results. Consider a ring of two orders as below is submitted via
submitRings():

order0: sell 1 token A, buy 10 token B, its spendable token A is larger than 1
order1: sell 10 token B, buy 1 token A, its spendable token B is just 5

A^er the manipulation of setMaxFillAmounts(), the filled amounts of two
orders become

order0: fillAmountS is 0, fillAmountB is 5
order1: fillAmountS is 5, fillAmountB is 0

Therefore, a^er the final token transfer, order1 sells 5 token A, but it does not get
any token B.

Status: Loopring developing team replied the unit of numbers in the above case is
actually in wei. The decimals of tokens in the real world are usually way large than
1 (usually 18, i.e., 1 token wei), so the loss in practice is pretty small and
can be ignored.

Severity: Low

5. Best Practices

LPSC is really in a high quality and we think the following best practices need to be
highlighted.

5.1 GAS Optimization

Structures of order and order-ring in LPSC are large, but multiple optimizations have been
applied to reduce the GAS consumption.

If a public function requires information of Order or Ring, its arguments only
include the necessary fields and pack them in byte arrays. Such optimization can
reduce the size of calldata and save the GAS consumption of users.
Always allocate large structures in the cheap memory rather than the expensive
storage, and use references as much as possible.
Implement some GAS-consumed operations in assembly, in order to avoid the
redundant and inefficient bytecode generated by the compiler.

5.2 Use of SafeMath

Integer overflow/underflow is a popular source of a lot of security issues. LPSC heavily
uses SafeMath which is helpful to mitigate undiscovered integer overflow/underflow bugs.

5.3 Safe External Calls

LPSC needs to call external contracts, including broker interceptors and token contracts,
which are not part of LPSC and trustless. For external calls performing critical operations,
such as transfer() and transferFrom() of ERC20 token contracts, and
getAllowance() and onTokenSpent() of broker interceptors, LPSC uses the low-level
call to invoke them and check the return value of call, which are implemented in files
contracts/lib/ERC20SafeTransfer.sol and
contracts/impl/BrokerInterceptorProxy.sol. Therefore, LPSC can have a
chance to handle the external call failures, rather than just revert everything.

In addition, the safe wrappers for broker interceptors set the GAS limit in order to avoid
abnormal interceptors consume too much GAS.

5.4 Re-entry Check

RingSubmitter::submitRings() and its sub-calls may call external contracts. If
those external contracts call submitRings() again, the integrity of submitRings()
may be broken. submitRings() deploys a re-entry check by using the highest bit of a
storage variable ringIndex in RingSubmitter as a flag to indicate if it is still running.
This bit is checked at the beginning of submitRings(). If it is set which implies
submitRings() is re-entered, then a revert will happen. If it is not set which means this
is a fresh call, then the bit will be set. Before submitRings() returns, this bit is cleared.

5.5 Good Test

Loopring developing team also rewrote LPSC in TypeScript. Lots of tests have been
performed on the TypeScript version, and used to check whether the Solidity version
works as expected.

5.6 Comprehensive Whitepaper

The whitepaper of Loopring protocol thoroughly explained the Loopring ecosystem, the
economic model and the lots of technical details, which can help a lot for auditors, users
and investors to understand Loopring protocol.

6. Conclusion

Though 3 implementation errors and 3 potential risks were found in the audit, all of them
have been fixed, or have been addressed out of LPSC, or have negligible effects in
practice. In addition, LPSC employed lots of best practices in the development and has a
good whitepaper.

In conclusion, LPSC is in a very good quality.

Disclaimer

SECBIT smart contract audit service assesses the contract's correctness, security and
performability in code quality, logic design and potential risks. The report is provided "as
is", without any warranties about the code practicability, business model, management
system's applicability and anything related to the contract adaptation. This audit report is
not to be taken as an endorsement of the platform, team, company or investment.

Level Description

High Severely damage the contract's integrity and allow attackers to steal ethers and
tokens, or lock ethers inside the contract.

Medium Damage contract's security under given conditions and damages the benefit of
stakeholders.

Low May cause damages in theory that, however, are impossible or can be ignored in
practice.

APPENDIX

Severity Levels

SECBIT Lab is devoted to construct a common-consensus, reliable and ordered
blockchain economic entity.

http://www.secbit.io

audit@secbit.io

@secbit_io

http://www.secbit.io/
mailto:audit@secbit.io
https://twitter.com/secbit_io

	Smart Contract Security Audit Report
	Loopring Protocol Smart Contract version 2
	Dec 15, 2018

	1. Introduction
	1.1 Basic Information of LPSC
	1.2 Audit Process
	1.3 Issue List

	2. Contract Analysis
	2.1 LPSC Overview
	2.2 Formal Model
	2.3 RingSubmitter
	2.3.1 Sub-state
	2.3.2 Specifications

	2.4 RingCanceller
	2.4.1 Sub-state
	2.4.2 Specifications

	2.5 TradeDelegate
	2.5.1 Sub-state
	2.5.2 Specifications

	2.6 FeeHolder
	2.6.1 Sub-state
	2.6.2 Specifications

	2.7 BurnManager
	2.7.1 Sub-state
	2.7.2 Specifications

	2.8 BurnRateTable
	2.8.1 Sub-state
	2.8.2 Specifications

	2.9 BrokerRegistry
	2.9.1 Sub-state
	2.9.2 Specifications

	2.10 OrderBook
	2.10.1 Sub-state
	2.10.2 Specifications

	2.11 OrderRegistry
	2.11.1 Sub-state
	2.11.2 Specifications

	3. Properties
	3.1 Properties about Suspend and Kill
	3.2 Properties about Privileged Users
	3.3 Properties about Valid Order-rings
	3.4 Properties about Order Cancellation
	3.5 Properties about Fee Withdraw
	3.6 Properties about Fee Burning

	4. Issues
	4.1 Issue #1 Mismatched tokens in adjacent orders
	4.2 Issue #2 withdraw() does not handle external call failures properly
	4.3 Issue #3 Incomplete check for multiple all-or-none orders in multiple rings
	4.4 Issue #4 Potential GAS attack to ring-mines from order brokers/owners
	4.5 Issue #5 High GAS consumption from abnormal token contracts
	4.6 Issue #6 Inaccurate filled amounts caused by rounding errors

	5. Best Practices
	5.1 GAS Optimization
	5.2 Use of SafeMath
	5.3 Safe External Calls
	5.4 Re-entry Check
	5.5 Good Test
	5.6 Comprehensive Whitepaper

	6. Conclusion
	Disclaimer
	APPENDIX
	Severity Levels
	SECBIT Lab is devoted to construct a common-consensus, reliable and ordered blockchain economic entity.

